Zero Divisor Graphs of Posets
نویسندگان
چکیده
In 1988, Beck [10] introduced the notion of coloring of a commutative ring R. Let G be a simple graph whose vertices are the elements of R and two vertices x and y are adjacent if xy = 0. The graph G is known as the zero divisor graph of R. He conjectured that, the chromatic number χ(G) of G is same as the clique number ω(G) of G. In 1993, Anderson and Naseer [1] gave an example of a commutative local ring R with 32 elements for which χ(G) > ω(G). Further, this concept of zero divisor graphs is well studied in algebraic structures such as rings, semigroups; see Anderson et. al. [1, 2], F. DeMeyer et. al. [14, 15], LaGrange [31, 32], Redmond [53, 54], and in ordered structure such as lattices, meet-semilattices, posets and qosets; see Alizadeh et. al. [9], Estaji and Khashyarmanesh [17], Halaš and Länger [21], Joshi et. al. [27, 28, 29], Lu and Wu [37], Nimbhorkar et. al. [48, 49, 68]. In this Thesis, we deal with the basic properties such as connectivity, diameter, girth (gr), eccentricity (e), radius (r), center, cut-set, clique number (ω), chromatic number (χ), domination number (γ) etc. of the
منابع مشابه
On the diameter and girth of zero-divisor graphs of posets
In this paper, we deal with zero-divisor graphs of posets. We prove that the diameter of such a graph is either 1, 2 or 3 while its girth is either 3, 4 or ∞. We also characterize zero-divisor graphs of posets in terms of their diameter and girth. © 2012 Elsevier B.V. All rights reserved.
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملA generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کامل$C_4$-free zero-divisor graphs
In this paper we give a characterization for all commutative rings with $1$ whose zero-divisor graphs are $C_4$-free.
متن کاملOn quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
متن کاملINDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS
Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$, if no two vertices of $S$ are adjacent.The independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.
متن کامل